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Abstract. Analytic formulae are given for the coefficients needed for computing the magneto-
static energy of a domain wall with a periodic magnetization structure, for the case of a film
sufficiently thin that there is no dependence on the coordinate along the film thickness. A method
is given for reducing the computational time of the magnetostatic energy, which can also be used
in other wall computations carried out by the LaBonte method. Several typographical errors in
the published coefficients for a magnetization structure with cylindrical symmetry in a sphere
are corrected.

1. Introduction

There are three types of 180◦ domain wall in thin ferromagnetic films, among which the least
understood is [1] the Ńeel wall. This wall is known to be observed in very thin films, but
its structure is not known, or at least there has been no reliable computation for such a wall
structure. In particular, none of the existing computations obeys [1] any self-consistency
test, such as the one given in section 5 here.

A thin film may be taken as a plate which is infinite in both thex- andz-directions, and
has a thickness 2b in the y-direction. For a certain range of values ofb, two-dimensional
computations of wall structures that depend onx andy but not onz are [1] very successful in
all respects. For thinner films it is obvious thatz must also be included [1], and computations
become too difficult because a present-day computer cannot handle three-dimensional wall
structures to the required accuracy. For still thinner films, some attempts to obtain results
for one- and two-dimensional walls have totally failed, and have not even indicated where
the correct answer should be looked for. There are some indications [1] that these walls
have periodic variations alongz, but it seems hopeless to try the full, three-dimensional
computations, which do not quite work even for the cross-tie walls in somewhat thicker
films.

The solution suggested here is computing a two-dimensional structure of a wall which
depends onx and z but not ony. At least for sufficiently thin films, ay-dependence
involves a large exchange energy. It is therefore likely to be fairly insignificant, and it is
hoped that if there is a weak dependence ony, its effect will be negligible. This assumption
makes all the difference, because a large body of experience has already accumulated in the
computation of two-dimensional walls. The dependence onz must be periodic, if one wants
to retain the assumption that the film is infinite in thez-direction. This periodicity does
not make any difference for the other energy terms, but it complicates the calculation of
the magnetostatic energy term somewhat, because magnetostatic interaction is a long-range
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force, and the summation converges very slowly. Still, certain periodic structures, such
as stripe domains [2, 3], have been studied before. In the present case at any rate, this
complication of the periodicity can be handled quite easily, as is seen in the following.

Analytic expressions are given in the next section for the coefficients needed for
computing the magnetostatic energy in the LaBonte [4] method. There are some, such as Yan
and Della Torre [5] or Chenet al [6], who prefer to compute such coefficients numerically
by evaluating a multiple integral, since they have to be computed only once. I prefer
formulae, whenever it is possible to derive them, which are not specific to one particular
computer. Others can evaluate the coefficients from the same formulae in accordance with
their particular preference of a subdivision size. An aid for convergence of the evaluation
of the coefficients is then described in section 3. In section 4, a method is outlined for
reducing the computational time, which can be helpful not only in this particular case, but
also in all LaBonte-type computations. The self-consistency test, already used for other
walls, is applied in section 5 to the present case of a periodic wall. Finally, I take this
opportunity to list corrections to some typographical errors in the published [7] coefficients
of the magnetostatic energy of asphere.

2. Magnetostatic energy

This energy, which originates from the classical dipolar interactions among lattice sites, is
the largest of all of the energy terms which play a role in the wall structure. As such,
it is the term which determines most of the structural details of the wall, and hence it is
important to compute it rigorously. All of the approximations ever tried [1] have proved to
be unsatisfactory, and in fact only the LaBonte method, which is used here, is sufficiently
accurate for the purpose.

A ferromagnetic plate is considered, which is infinite in thex- and z-directions and
extends from−b to +b in they-direction. The part where|x| 6 a is assumed to be a wall,
separating two domains which are magnetized along±z at x = ±a. It is also assumed that
the magnetization vector

m =M/Ms (1)

is independent ofy, and that the wall isperiodic in the z-direction, with a period 2c—that
is, that

m(x, z) =m(x, z+ 2nc) (2)

for any integral value ofn. It should be noted that the ‘classical’, one-dimensional Néel
wall is included as a particular case. If there is no energetic advantage to this periodicity,
the energy minimization should converge to a structure with noz-dependence. For such a
case, there is no meaning toc, which can be any number, but this ambiguity cannot affect
a minimization process which starts with a pre-assigned value ofc. If a z-dependence does
emerge, the value ofc should be adjusted so that the lowest energy minimum is obtained.

The basic approach is that of LaBonte [4], which is somewhat modified for the present
problem. The wall is subdivided intoNx cells in thex-direction, taking theI th cell as
covering the length

−a + 2a(I − 1)/Nx 6 x 6 −a + 2aI/Nx

for I = 1, 2, . . . , Nx . In thez-direction, theperiod2c is subdivided intoNz cells, designated
by J = 1, 2, . . . , Nz, where theJ th cell covers the length

−c + 2c(J − 1)/Nz 6 z 6 −c + 2cJ/Nz.
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These cells are squares if and only ifaNz = cNx , but there is no advantage to the use of
this particular case, and it can be assumed thatNx andNz are chosen independently of each
other for any particular study. As is usually the case in such calculations, the magnetization
unit vectorm is assumed to be a constant in each of these cells. Its value in the(I, J ) cell
is written as the vectorm(I, J ).

There is no particular difficulty with the other wall energy terms. The magnetostatic
energy per unit wall area per cycle, after one has carried out all of the integrations
analytically, has the general form

γM = M2
s

Nx∑
I=1

Nz∑
J=1

Nx∑
I ′=1

Nz∑
J ′=1

{A(I, J, I ′, J ′)mx(I, J )mx(I ′, J ′)

+ B(I, J, I ′, J ′)my(I, J )my(I ′, J ′)+ C(I, J, I ′, J ′)mz(I, J )mz(I ′, J ′)
+ D(I, J, I ′, J ′)[mx(I, J )mz(I ′, J ′)+mz(I, J )mx(I ′, J ′)]}. (3)

Here, the combination of the two terms multiplyingD is not an assumption. It is the result
of calculating each of the two terms separately, and therefore implies

D(I, J, I ′, J ′) = D(I ′, J ′, I, J ). (4)

Another result from the actual integrations is

A(I, J, I ′, J ′)+ B(I, J, I ′, J ′)+ C(I, J, I ′, J ′) = 0. (5)

No physical interpretation can be given for this relation, which is just a mathematical result.
Equation (5) shows that there are only three sets of coefficients,A, B andD, which

still need to be specified. It should be noted that these coefficients actually depend only on
the distances between each subdivision and the others. Therefore, they depend on the four
parameters,I , J , I ′ andJ ′ only through their differences,K = I − I ′ andL = J − J ′, as
can be seen from the specific expressions which are given in the following.

If F denotes one of the sets of coefficients,A, B or D, I have proved that it can be
written as the combination

F(I, J, I ′, J ′) = 2F(I − I ′, J, J ′)− F(I − I ′ + 1, J, J ′)− F(I − I ′ − 1, J, J ′) (6)

and

F(K, J, J ′) = 2F̂(K, J − J ′)− F̂(K, J − J ′ + 1)− F̂(K, J − J ′ − 1) (7)

for certain functionsÂ, B̂ and D̂. There is some overlap of the functions in̂A and B̂,
which makes it more convenient to express them as

Â(K,L) = −F1(K,L)+ F2(K,L)+ F4(K,L)+ F5(K,L) (8)

B̂(K,L) = −F2(K,L)− F3(K,L)+ F4(K,L)+ F6(K,L) (9)

where

F1(K,L) = 1

2

∞∑
n=−∞

(
P

c
− c32

)
ln

(√
G− b√
G+ b

)
(10)

F2(K,L) =
∞∑

n=−∞
3

[(
P

b
− b

)
ln(
√
G+ c3)− P

b
ln(
√
Q+ c3)

]
(11)

F3(K,L) = aK

Nx

∞∑
n=−∞

[(
c

b
32− b

c

)
ln

(√
G+ aK

Nx

)
− c
b
32 ln

(√
Q+ aK

Nx

)]
(12)
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F4(K,L) = 1

3bc

∞∑
n=−∞

(G3/2−Q3/2) (13)

F5(K,L) = aK

Nx

∞∑
n=−∞

[
23 arctan

(
bcNx3

aK
√
G

)
+ aK

bcNx
(
√
Q−
√
G)

]
(14)

and

F6(K,L) =
∞∑

n=−∞

[
2aK

Nx
3 arctan

(
acK3

bNx
√
G

)
− b
c

√
G

]
. (15)

Here

3 = L

Nz
− n P =

(
aK

Nx

)2

Q = c232+ P and G = Q+ b2. (16)

The other function,D̂, also has some terms which are the same as, or very similar to,
certain terms in the previous functions. However, it does not seem worthwhile to separate
them, and therefore they are all put together here as

D̂(K,L) =
∞∑

n=−∞

{
aK

Nx

[
3 ln

(√
G− b√
G+ b

)
+ 1

3bc
(P − 3b2) ln(

√
G+ c3)− P

3bc

× ln(
√
Q+ c3)+ 23

3b
(
√
G−

√
Q)

]
+
(
c32− P

c

)
arctan

(
abK

Nxc3
√
G

)
+ 1

c

(
b2

3
− P

)
arctan

(
acK3

Nxb
√
G

)
+3

(
c2

3b
32− b

)
ln

(√
G+ aK

Nx

)
− c2

3b
33 ln

(√
Q+ aK

Nx

)}
. (17)

In the limit of small b it may be sufficient to consider only the first-order terms in
power-series expansions of these expressions. This is not likely to be adequate for many
problems, but this first-order approximation is given here anyway:

Â(K,L) = b
∞∑

n=−∞

[√
Q

c
−3 ln(

√
Q+ c3)

]
+O(b3) (18)

B̂(K,L) = b
∞∑

n=−∞

[
3 ln(

√
Q+ c3)+ aK

cNx
ln

(√
Q+ aK

Nx

)
− 2

c

√
Q

]
+O(b3) (19)

D̂(K,L) = −b
∞∑

n=−∞

[
3 ln

(√
Q+ aK

Nx

)
+ aK

cNx
ln(
√
Q+ c3)

]
+O(b3). (20)

Most of the terms in equation (17) are odd functions ofK. As such they vanish for the
particular cases in whichK is either 0 or±1, as is the case forI = I ′. In all of the other
terms, the contribution ofK = 0 cancels that ofK ± 1. It is thus easy to see that

D(I, J, I, J ′) = 0. (21)

There is no simple relation for the case whereI = I ′ for the other coefficients. LaBonte
[4], however, found it more convenient for the minimization process to separate the ‘self’-
terms, with(I, J ) = (I ′, J ′), from the ‘interaction’ terms, with(I, J ) 6= (I ′, J ′). In some
ways it is an artificial and arbitrary separation, because there is no fundamental difference
between the two classes. Nevertheless, it is a convenient separation, and is therefore adopted
here too, and separate expressions are given for the special case where(I, J ) = (I ′, J ′).
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In this case, the summation of the various terms in equations (6) and (7) can be performed
analytically, thus givingA andB explicitly. Specifically, using the notations

n1 = n+ 1

Nz
P1 =

(
a

Nx

)2

Q0 = P1+ c2n2 Q1 = P1+ c2n2
1

G0 = b2+ c2n2 G1 = b2+ c2n2
1

G2 = G0+ P1 G3 = G1+ P1

(22)

it is possible to write

A(I, J, I, J ) = −F (n)1 + F (n)2 + F (n)4 + F (n)5 (23)

B(I, J, I, J ) = −F (n)2 − F (n)3 + F (n)4 + F (n)6 (24)

with

F
(n)

1 = 4c
∞∑
n=1

n2 ln

(√
G0+ b√
G0− b

)
− 2c

∞∑
n=−∞

n2
1 ln

(√
G1+ b√
G1− b

)
+ 2

∞∑
n=−∞

[(
P1

c
− cn2

)
ln

(√
G2+ b√
G2− b

)
−
(
P1

c
− cn2

1

)
ln

(√
G3+ b√
G3− b

)]
(25)

F
(n)

2 = 4
∞∑

n=−∞

{
n

[
P1

b
ln(
√
Q0+ cn)− b ln(

√
G0+ cn)+

(
b − P1

b

)
× ln(

√
G2+ cn)

]
+ n1

[
b ln(

√
G1+ cn1)+

(
P1

b
− b

)
ln(
√
G3+ cn1)

− P1

b
ln(
√
Q1+ cn1)

]}
(26)

F
(n)

3 =
2a

Nx

∞∑
n=−∞

[(
b

c
− cn

2

b

)
ln

(√
G2+ a/Nx√
G2− a/Nx

)
+ cn

2

b
ln

(√
Q0+ a/Nx√
Q0− a/Nx

)
+
(
cn2

1

b
− b
c

)
ln

(√
G3+ a/Nx√
G3− a/Nx

)
− cn

2
1

b
ln

(√
Q1+ a/Nx√
Q1− a/Nx

)]
(27)

F
(n)

4 =
4

3bc

∞∑
n=−∞

[
G

3/2
3 −G3/2

2 −G3/2
1 +G3/2

0 −Q3/2
1 +Q3/2

0 + c3(|n1|3− |n|3)
]

(28)

F
(n)

5 =
4a

Nx

∞∑
n=−∞

[
a

bcNx
(
√
G2−

√
G3+

√
Q1−

√
Q0)− 2n arctan

(
bcNxn

a
√
G2

)
+ 2n1 arctan

(
bcNxn1

a
√
G3

)]
(29)

F
(n)

6 =
∞∑

n=−∞

{
4b

c
(
√
G2−

√
G3+

√
G1−

√
G0)+ 8a

Nx

[
n1 arctan

(
acn1

bNx
√
G3

)
− n arctan

(
acn

bNx
√
G2

)]}
. (30)

These terms, and thereforeA andB as well, do not depend on the values ofI andJ .
This result is as expected, because there can be no difference between one prism and another
when it is taken as a separate entity, without the interaction with other prisms. Unlike the
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case studied by LaBonte [4], the ‘self’-terms here contain a summation overn, because the
case whereI = I ′, J = J ′ does not lead to a single cell. It leads to the basic unit, which is
the set of all of the cells with the same(I, J ), separated by the periodic length 2c, including
the interactions among them. The actual terms for the isolated cell, as in the ‘self’-terms
of [4], are those withn = 0 in equations (23) to (30). These terms, however, only lead
to the demagnetizing factors of the unit prism, with the dimensions 2a/Nx × 2b × 2c/Nz,
which have no particular application to the present problem. The demagnetizing factors of
the general prism have already been published [8], and it does not seem necessary to list
them here.

3. Summation overn

All of the expressions in the previous section are rigorous, being calculated by analytic
integration, with no approximations. It is clear, however, that the magnetostatic coefficients
cannot be computed from these expressions, as written, to any reasonable accuracy, because
large computational errors will be encountered for large values ofn. Therefore, the sum-
mation overn is replaced by an integration overn above a certain value,Np:

Fi(K,L) =
∞∑

n=−∞
Gi (n) =

Np−1∑
n=−(Np−1)

Gi (n)+
[∫ −Np
−∞
+
∫ ∞
Np

]
Gi (n) dn (31)

where theGi are the expressions in all of the foregoing definitions ofFi , and similarly for
D̂. After carrying out all of the integrations, the result is

Fi(K,L) =
Np−1∑

n=−(Np−1)

Gi (n)+
∑
m=±1

mF ∗i (K,L,−mNp) (32)

and similarly for Â etc. Since many of the terms occur in more than one of theF ∗i ,
computing them separately is wasteful. Therefore, the combinations according to equations
(8) and (9) are written directly as

Â∗(K,L, n) = 3

2

(
c

3
32− P

c

)
ln

(√
G+ b√
G− b

)
+ 3

2b|3|
{
P

(
32− P

4c2

)
ln(
√
Q

+ c|3|)+
[
32(b2− P)− 1

4c2

(
b4

3
+ 2b2P − P 2

)]
ln(
√
G+ c|3|)

}
+ aK

Nx

[(
P

3c2
−32

)
arctan

(
bcNx3

aK
√
G

)
+
(
L

Nz

)2
3

|3| arctan

(
bNx

aK

)]
+ 3

4bc

[
Q3/2−G3/2

3
+ 5P

2
(
√
G−

√
Q)− 5b2

6

√
G

]
(33)

B̂∗(K,L, n) = 3

2b|3|
{[
(P − b2)32+ 1

c2

(
b4

4
− b

2

2
P − P

2

12

)]
ln(
√
G+ c|3|)

+
(
P

12c2
−32

)
P ln(

√
Q+ c|3|)

}
+ aK
Nx

{
3

[(
c32

3b
− b
c

)
ln

(√
G

+ aK

Nx

)
− c3

2

3b
ln

(√
Q+ aK

Nx

)]
+
(
b2

3c2
−32

)
arctan

(
aKc3

bNx
√
G

)
+
(
L

Nz

)2
3

|3| arctan

(
aK

bNx

)}
+ 3

4bc

[
Q3/2−G3/2

3
+ 5b2

2

√
G
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+ 5P

6
(
√
Q−
√
G)

]
. (34)

The second arctangent in each of the equations (33) and (34) is an integration constant that
makes the appropriate expression vanish at infinity. Similarly,

D̂∗(K,L, n) = aK

2Nx

(
P

3c2
−32

)
ln

(√
G− b√
G+ b

)
+ aK|3|

3bcNx
(3b2− P) ln(

√
G+ c|3|)

+ |3|
3bc

(
aK

Nx

)3

ln(
√
Q+ c|3|)−

(
b3

12c2
− b3

2

2
+ c

234

12b

)
ln

(√
G

+ aK

Nx

)
+ c

234

12b
ln

(√
Q+ aK

Nx

)
− aK

4Nxbc2
(G3/2−Q3/2)

+ 5

12bc2

(
aK

Nx

)3

(
√
G−

√
Q)+3

(
P

c
− c

3
32

)
arctan

(
abK

c3Nx
√
G

)
+ 3

c

(
P − b

2

3

)
arctan

(
aKc3

bNx
√
G

)
. (35)

As is the case with equation (21), it can be shown that this part of the total expression for
D also vanishes forI = I ′, whateverJ andJ ′ are.

After integration of equations (25)–(30) as in equation (31), and then substitution in
equations (23) and (24), one obtains for the case where(I, J ) = (I ′, J ′)

A(n)
∗
(I, J, I, J ) = fA(n)− fA(n1)− 4an1

NxN2
z |n1| arctan

(
bNx

a

)
(36)

and

B(n)
∗
(I, J, I, J ) = fB(n)− fB(n1)− 4an1

NxN2
z |n1| arctan

(
a

bNx

)
(37)

with

fA(n) = n

b|n|
{(

2n2− P1

2c2

)
P1 ln(

√
Q0+ c|n|)− b2

(
2n2− b2

6c2

)
ln(
√
G0+ c|n|)

+
[

2n2(b2− P1)− 1

2c2

(
b4

3
+ 2b2P1− P 2

1

)]
ln(
√
G2+ c|n|)

}
− 2cn3

3
ln

(√
G0+ b√
G0− b

)
+ 2n

(
cn2

3
− P1

c

)
ln

(√
G2+ b√
G2− b

)
+ 4a

Nx

(
P1

3c2
− n2

)
arctan

(
bcnNx

a
√
G2

)
+ 5nP1

2bc
(
√
G2−

√
Q0)

+ n

3bc

[
G

3/2
0 − c3|n|3+Q3/2

0 −G3/2
2 +

5b2

2
(
√
G0−

√
G2)

]
(38)

and

fB(n) = n

b|n|
{(

P1

6c2
− 2n2

)
P1 ln(

√
Q0+ c|n|)+ b2

(
2n2− b2

2c2

)
ln(
√
G0+ c|n|)

+
[

2n2(P1− b2)+ 1

2c2

(
b4− 2b2P1− P

2
1

3

)]
ln(
√
G2+ c|n|)

}
+ 2a

Nx

{
n

[(
cn2

3b
− b
c

)
ln

(√
G2+ a/Nx√
G2− a/Nx

)
− cn

2

3b
ln

(√
Q0+ a/Nx√
Q0− a/Nx

)]
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+ 2

(
b2

3c2
− n2

)
arctan

(
acn

bNx
√
G2

)}
+ 5bn

2c
(
√
G2−

√
G0)

+ n

3bc

[
G

3/2
0 − c3|n|3+Q3/2

0 −G3/2
2 +

5P1

2
(
√
Q0−

√
G2)

]
. (39)

4. Saving computational time

It can be shown that the foregoing implies that

A(I, J, I ′, J ′) = A(I ′, J ′, I, J ) and B(I, J, I ′, J ′) = B(I ′, J ′, I, J ). (40)

This relation is a direct result of the definition ofA andB as interaction terms in equation
(3), because the interaction ofa and b is always the same as the interaction ofb and a.
Similar relations also hold forC andD, according to equations (4) and (5). These symmetry
relations can be used to eliminate about half of the terms from the summations in equation
(3), thus reducing the computational time required to obtain the magnetostatic energy in
each iteration by about a factor of 2.

To do this, let each sum overI ′ in equation (3) be broken up into a sum of three terms,
one for I ′ < I , one forI ′ = I and one forI ′ > I . In the sum withI ′ > I , the order of
the summation overI andI ′ is changed, together with interchanging of thelabelsI ↔ I ′

andJ ↔ J ′. Using the symmetry relations, it is readily seen that this sum is the same as
the one withI ′ < I . Using equations (5) and (21), and the notation

R(I, J, I ′, J ′) = [mx(I, J )mx(I ′, J ′)−mz(I, J )mz(I ′, J ′)]A(I, J, I ′, J ′) (41)

S(I, J, I ′, J ′) = [my(I, J )my(I ′, J ′)−mz(I, J )mz(I ′, J ′)]B(I, J, I ′, J ′) (42)

T (I, J, I ′, J ′) = [mx(I, J )mz(I ′, J ′)+mz(I, J )mx(I ′, J ′)]D(I, J, I ′, J ′) (43)

the magnetostatic energy per unit wall area per cycle can be written as

γM = M2
s

Nz∑
J=1

Nz∑
J ′=1

{ Nx∑
I=1

[
R(I, J, I, J ′)+ S(I, J, I, J ′)]

+ 2
Nx∑
I=2

I−1∑
I ′=1

[
R(I, J, I ′, J ′)+ S(I, J, I ′, J ′)+ T (I, J, I ′, J ′)]}. (44)

The second summation overI starts fromI = 2, because the sum overI ′ is empty for
I = 1. The ‘self’-terms of LaBonte [4] are part of the first line, but are not written separately
here.

Obviously, this reduction of the number of terms in the four-times summation by a
factor of 2 reduces the computational time by about the same factor. Moreover, this time
saving is effectively by a factor of two in the total computational time, because almost
all of the computer time is spent on computing the magnetostatic energy term in this kind
of computation. It should be particularly emphasized that the reduction is not due to any
assumption of symmetry in the wall structure. It is a mere manifestation of the general rule
that an interaction ofa with b is the same as an interaction ofb with a, and need not be
evaluated twice.

As a general rule it should not be too difficult to apply this to other cases of LaBonte-
type computations, which are always very elaborate and time consuming. In particular,
in the original two-dimensional wall computations, LaBonte [4] noted the same symmetry
relations as are used here, but did not take the next step of eliminating superfluous terms from
the summations. Equation (44) can be used for that case, and for other wall computations
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in the literature, in almost the same form in which it is written here, but this was for
some reason not noticed. Researchers have tried to reduce the computational time by
certain techniques, such as those described in [9], which are less powerful, less general and
more difficult to apply than the present one. Others tried to simplify the computation of
the magnetostatic energy term, which takes practically all of the computational time, by
making various approximations, listed in [10] and in chapter 11 of [1]. Some still do this,
but others realized later that these approximations were not good enough, and reverted to
the full LaBonte method as in the case of [5] or, more recently, [11]. The present suggestion
could have been more useful.

5. Self-consistency

It is very easy to make mistakes in programming numerical computations, and very difficult
to find them. It is therefore necessary to build some tests and checks into any program.
One such check, known as the self-consistency test, has been used [1] to eliminate incorrect
wall structures. It is based on computing the total energy using two different formulae,
which should yield the same resultsif the computed structure is at a true energy minimum.
It is thus known that if the results are not nearly the same, there is something wrong with
the energy minimization. Having such a self-consistent magnetization structure is only a
necessary, and not a sufficient, condition for the computation to be correct, but the test
always helps, and is a powerful tool that has already been used successfully.

In the case studied here, the total energy contains two other energy terms, besides the
magnetostatic energy. One of them is the exchange energy, which originates from the
quantum-mechanical interaction between neighbouring spins. In its classical form, and for
the case of noy-dependence, this energy, per unit wall area per cycle, is

γe = C

4c

∫ c

−c

∫ a

−a

[
(∇mx)2+ (∇my)2+ (∇mz)2

]
dx dz (45)

where C is the exchange constant. The second term is the anisotropy energy, which
originates from the spin–orbit interaction that couples the spins (namely, the direction of the
magnetization) to certain preferred crystallographic directions. This energy, per unit wall
area per cycle, when there is noy-dependence, can be written as

γa = 1

2c

∫ c

−c

∫ a

−a
wa dx dz+ γs (46)

wherewa is the anisotropy energy density andγs is a surface anisotropy term. There may
be different forms for the latter, which need not be specified here. It should only be noted
that it is essential to include such an energy term, even though previous studies of domain
walls did not consider it. There is clear experimental evidence [12] that very thin films
often have a high surface anisotropy.

The transformation of these energy terms, with or without adding an interaction with
an applied field, is essentially the same as in [4], and need not be specified. Expressing
the problem in terms of differential equations, and then integrating a linear combination of
them is also the same as the procedure in section 8.4 of [1], and need not be repeated. That
derivation did not specify any form for the surface energy term, but the surface energy does
not enter the differential equations anyway and affects only the boundary conditions. It can
thus be readily seen that if the magnetization is at an energy minimum, the total wall energy
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should also be equal to

γ ′wall =
1

4c

∫ c

−c

∫ a

−a

[
2wa−m · ∂wa

∂m
+ 1

my

(
∂wa

∂my
− C ∇2my

)]
dx dz+ γs+ γ ∗M (47)

where

γ ∗M =
Ms

8bc

∫ c

−c

∫ b

−b

∫ a

−a

1

my

∂U

∂y
dx dy dz (48)

andU is the magnetostatic scalar potential. The integrations are the same as some of those
that enter the magnetostatic energy, leading to

γ ∗M =
M2
s

4bc

Nx∑
I=1

Nx∑
I ′=1

Nz∑
J=1

Nz∑
J ′=1

my(I
′, J ′)

my(I, J )
B(I, J, I ′, J ′) (49)

with the sameB as defined in the foregoing. The computation of the most difficult term in
equation (47) is discussed in [13]. This equivalence ofγwall andγ ′wall at an energy minimum
can serve (as in previous cases) to check the self-consistency of the computations. Ifγwall

andγ ′wall are not nearly the same, the solution is not near a minimum-energy state.
Another such check can be obtained from a different combination of the differential

equations, and should be particularly useful for a case in whichmy turns out to be zero. It
can be proved that at an energy minimum,γwall shouldalso be equal to

γ ′′wall =
1

4c

∫ c

−c

∫ a

−a

[
2wa−m · ∂wa

∂m
+ 1

mz

(
∂wa

∂mz
− C ∇2mz

)]
dx dz+ γs+ γ ∗∗M (50)

with

γ ∗∗M =
M2
s

4bc

Nx∑
I=1

Nx∑
I ′=1

Nz∑
J=1

Nz∑
J ′=1

D(I, J, I ′, J ′)mx(I ′, J ′)+ C(I, J, I ′, J ′)mz(I ′, J ′)
mz(I, J )

. (51)

Appendix A. The sphere

The coefficients of the magnetostatic energy of a sphere, under the constraint of cylindrical
symmetry of the magnetization, were published in [7]. They were computed and used
correctly in all of the computations which followed, but there are some errors in theprinted
formulae, which have never been pointed out. These errors are listed here in order to make
it possible for others to use the correct coefficients.

(i) Equation (8) of [7] should be replaced by

M ′ = 9

2N3
r

. (A1)

(ii) Equation (16) of [7] should be replaced by

gn(J, J
′) =

[
1

(J − 1)n−1
− 1

J n−1

]
[(J ′)n+2− (J ′ − 1)n+2]. (A2)

(iii) Equation (20) of [7] should be replaced by

Y (J ) = 1

6

[
(J − 1)3 ln

(
J

J − 1

)
− J 2+ J − 1

3

]
. (A3)

(iv) (n+ 2)2 should be replaced by(n+ 2)3 in the denominators of both equation (12)
and equation (15) of [7].
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